

Molecular Crystals and Liquid Crystals

ISSN: 1542-1406 (Print) 1563-5287 (Online) Journal homepage: http://www.tandfonline.com/loi/gmcl20

Crystal Structure and Vibrational Spectra of 3-Chloro-4-Phenyl-6-(Morpholine-4-yl)-Pyridazine by Hartree-Fock and Density Functional Methods

Abdullah Aydin, Hakan Arslan, Murat Şüküroğlu, Mehmet Akkurt & Orhan Büyükgüngör

To cite this article: Abdullah Aydin, Hakan Arslan, Murat Şüküroğlu, Mehmet Akkurt & Orhan Büyükgüngör (2015) Crystal Structure and Vibrational Spectra of 3-Chloro-4-Phenyl-6-(Morpholine-4-yl)-Pyridazine by Hartree-Fock and Density Functional Methods, Molecular Crystals and Liquid Crystals, 606:1, 216-236, DOI: 10.1080/15421406.2014.915664

To link to this article: http://dx.doi.org/10.1080/15421406.2014.915664

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gmcl20

Mol. Cryst. Liq. Cryst., Vol. 606: pp. 216–236, 2015 Copyright © Taylor & Francis Group, LLC

ISSN: 1542-1406 print/1563-5287 online DOI: 10.1080/15421406.2014.915664

Crystal Structure and Vibrational Spectra of 3-Chloro-4-Phenyl-6-(Morpholine-4-yl)-Pyridazine by Hartree-Fock and Density Functional Methods

ABDULLAH AYDIN,^{1,*} HAKAN ARSLAN,² MURAT ŞÜKÜROĞLU,³ MEHMET AKKURT,⁴ AND ORHAN BÜYÜKGÜNGÖR⁵

¹Department of Science Education, Faculty of Education, Kastamonu University, Kastamonu, Turkey

²Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, Turkey

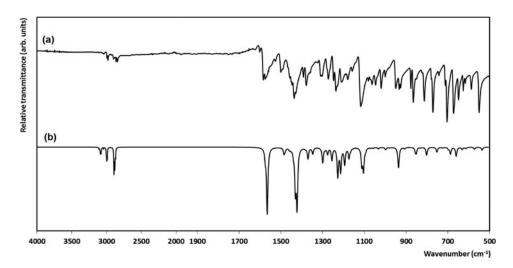
³Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey

⁴Department of Physics, Faculty of Sciences, Erciyes University, Kayseri, Turkey ⁵Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayis

University, Samsun, Turkey

The title compound, 3-chloro-4-phenyl-6-(morpholine-4-yl)-pyridazine (I), was prepared and characterized using elemental analysis and FT-IR and ¹H NMR spectroscopy studies. The crystal and molecular structure of the title compound was determined from single-crystal X-ray diffraction data. It crystallizes in the orthorhombic space group $P2_12_12_1$, Z = 8 with a = 7.5743 (3) Å, b = 14.8922 (8) Å, c = 23.3472 (9) Å, V = 23.34722633.5 (2) Å³, and $D_x = 1.391 \text{ Mg/m}^3$. The title compound, $C_{14}H_{14}ClN_3O$, crystallizes with two independent molecules A and B in the asymmetric unit, wherein the morpholine ring adopts a distorted chair conformation. The 1,6-dihydropyridazine ring creates dihedral angles of 47.0(3)° (in molecule A) and 47.9(2)° (in molecule B) with the phenyl ring, respectively. The crystal studied was an inversion twin with a 0.56(12):0.44(12) domain ratio. The molecular structure, vibrational frequencies, and intensities of the title compound were calculated using Hartree-Fock and density functional theory methods (BLYP, B3LYP, B3PW91, and mPW1PW91) using the 6-31G(d,p) basis set. The calculated geometric parameters were compared to the corresponding single crystal X-ray structure of the title compound. Comparison of the theoretical and experimental geometries of the title compound show that the X-ray parameters are in good agreement with the optimized molecular structure of the title compound. In addition, the harmonic vibrations computed for this compound using the B3LYP/6-31G(d,p) method are in good agreement with the observed vibrational spectral data. Theoretical vibrational spectra of the title compound were interpreted using PEDs and the VEDA 4 program. The superior performance of these investigated methods was calculated using the PAVF 1.0 program.

^{*}Address correspondence to Abdullah Aydin, Department of Science, Faculty of Education, Kastamonu University 37200, Kastamonu, Turkey. E-mail: aaydin@kastamonu.edu.tr


Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/gmcl.

Keywords Ab initio calculations; alkanoic acids; B3LYP; DFT; infrared spectrum; non-steroidal anti-inflammatory drugs; vibrational frequencies

Introduction

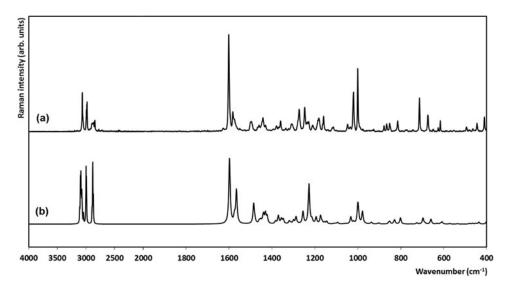
A series of 6-morpholino-4-aryl-3(2H)-pyridazinone alkanoic acids their ester and amide derivatives were prepared and tested for their in vivo analgesic activity using the p-benzoquinone-induced writhing test [1]. In recent years, the 3(2H)-pyridazinone system has attracted a great deal of attention due to its structural relationship to pyrazolone derivatives such as aminopyrine and dipyrone, themselves derived from ring enlargement of pyrazolone to pyridazinone. These drugs possess analgesic and anti-inflammatory activities but have limited clinical use due to serious side effects such as blood dyscrasias [1, 2]. Studies focusing on 3(2H)-pyridazinones indicate that 2-substituted 4,5-functionalised 6-phenyl-3(2H)-pyridazinone derivatives possess potent analgesic activity and lack the general side effects, i.e., gastric irritation and renal suppression, of currently used non-steroidal anti-inflammatory drugs [3].

Our literature survey reveals that neither the complete vibrational spectra nor the quantum mechanical calculations for the title compound have been reported. Therefore, we have undertaken a detailed theoretical and experimental investigation of the vibrational spectra of this molecule. We calculated the vibrational frequencies and geometric parameters of the title compound in the ground state to distinguish the fundamentals from the experimental vibrational frequencies and geometric parameters using the density functional with the HF, BLYP, B3LYP, B3PW91, and mPW1PW91 methods and the standard 6-31G(d,p) basis set. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). In the present work, we continued our theoretical studies, checking the relative performance of the B3PW91, BLYP, and B3LYP methods for comparison at the 6-31G(d,p) level, using the title compound as a test compound.

Figure 1. Experimental (a) and theoretical (b) FT-IR spectrum of 3-chloro-4-phenyl-6-(morpholine-4-yl)-pyridazine.

Experimental

Instrumentation


 1 H NMR spectra were recorded on a Bruker 400 FT-NMR spectrometer (Bruker, Rheinstetten, Germany) using TMS as the internal standard in CDCl₃. Elemental analyses of C, H, and N were performed at the Scientific and Technical Council of Turkey, Instrumental Analysis Center (Ankara, Turkey) and were within $\pm 0.4\%$ of the theoretical values.

The room temperature attenuated total reflection Fourier transform infrared (FT-IR ATR) spectra of the title compound were recorded using a Perkin Elmer Spectrum 100 series spectrometer with a ATR prism (4000–525 cm⁻¹; number of scans: 250; resolution: 1 cm⁻¹) (Fig. 1).

The FT-Raman spectrum of the title compound was recorded using a Nicolet Spectrometer 6700 in 4000–400 cm⁻¹ range at the room temperature with a laser wavelength of 780 nm. The recorded FT-Raman spectrum of the title compound is shown in Fig. 2.

Synthesis of Compound 3-Chloro-4-Phenyl-6-(Morpholine-4-yl)-Pyridazine (I)

A mixture of 0.02 mol 4-phenyl-3,6-dichloropyridazine, 0.04 mol morpholine and 0.04 mol triethylamine in 2-propanol was refluxed for 12 hr. After cooling the mixture at room temperature, the precipitated crystals were filtered and washed with ice-cold ethanol (Scheme 1). 3-Chloro-4-phenyl-6-(morpholine-4-yl)-pyridazine (**I**): Recrystallized from ethanol. Yield: 88%. M.p.: $181-183^{\circ}$ C. 1 H NMR (400 MHz, CDCl₃, δ , ppm): 7.43 (m, 5H, phenyl-H2-6), 6.76 (s, 1H, pyridazine-H5), 3.77 (t, 4H, morpholine-H2, H6), and 3.56 (t, 4H, morpholine-H3, H5). Anal. calcd. for $C_{14}H_{14}ClN_3O$: C, 60.98; H, 5.12; N, 15.24. Found: C, 61.02; H, 5.68; N, 15.09% [1].

Figure 2. Experimental (a) and theoretical (b) FT-Raman spectrum of 3-chloro-4-phenyl-6-(morpholine-4-yl)-pyridazine.

i; K_2CO_3 , MeOH, r.t. 24 h, ii; $HCOOH/H_2SO_4$, reflux, iii; NH_2NH_2 , water, reflux, iv; $POCI_3$, v; Morpholine, isopropanol, reflux

Scheme 1. Synthesis of the title compound.

Crystal Structure Analysis

In this study, single crystal X-ray data were performed at 296 K on a STOE IPDS 2 X-AREA [4] diffractometer with Mo $K\alpha$ radiation ($\lambda=0.71073$ Å) to $\theta_{max}=26.5^{\circ}$. Cell parameters were obtained from 22079 reflections. The cell was refined on a STOE X-AREA and the data were reduced on a X-RED32 and corrected for absorption using integration of 20482 measured reflections; 5443 were independent ($R_{int}=0.061$) [4]. The structure was solved using direct methods using SIR-97 [5] and refined with a full-matrix least-squares procedure using the program SHELXL-97 [6]. All non-hydrogen atoms were refined anisotropically. H atoms were positioned geometrically and refined using a riding model with C-H = 0.93 and 0.97 Å, and $U_{iso}(H)=1.2U_{eq}(C)$. The crystal studied was an inversion twin with a 0.56(12):0.44(12) domain ratio. The number of Freidel pairs in the data set is 2336. A molecular plot was prepared with ORTEP-3 for Windows [7]. The programs used to prepare material for publication were WINGX [8] and PLATON [9]. Further details concerning data collection and refinement [10] are given in Table 1.

Calculations Details

All calculations were performed using Gaussian 03W on a double Xeon/3.2 GHz processor with 8 GB Ram [11]. The molecular structure of the title compound in the ground state was optimized by using HF, BLYP, B3LYP, B3PW91, and mPW1PW91 methods with the standard 6-31G(d,p) basis set. The vibrational frequencies were also calculated using these methods. The frequency values computed at these levels contain known systematic errors [12]. Therefore, we used the scaling factor values of 0.8992, 1.0072, 0.9614, 0.9573, and 0.9500 for HF, BLYP, B3LYP, B3PW91, and mPW1PW91, respectively [13–16].

We have also calculated optimal scaling factors for all investigated methods. The assignment of the calculated wave numbers is aided by the animation option in Gauss View

Table 1. Crystal and experimental data of the title compound

Crystal	data
---------	------

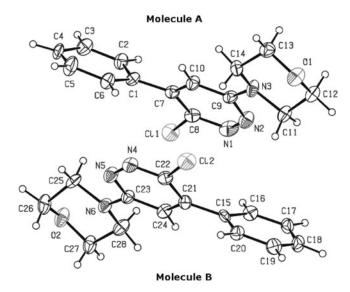
$C_{14}H_{14}CIN_3O$	$D_x = 1.391 \text{ Mg m}^{-3}$
$M_r = 275.73$	Mo $K\alpha$ radiation
Orthorhombic, $P2_12_12_1$	Cell parameters from 22,079 reflections
a = 7.5743 (3) Å	$\theta = 1.4 – 27.3^{\circ}$
b = 14.8922 (8) Å	$\mu = 0.28 \; \mathrm{mm}^{-1}$
c = 23.3472 (9) Å	T = 296 (2) K
$V = 2633.5 (2) \text{ Å}^3$	Thin plate, pink
Formula $Z = 8$	$0.66 \times 0.37 \times 0.03 \text{ mm}$
Space group $Z = 4 \Rightarrow Z' = 8/4 = 2.0$	

Data collection

STOE IPDS 2 diffractomer	3352 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.061$
Absorption correction: integration	$\theta_{\rm max} = 26.5^{\circ}$
$T_{\min} = 0.880, T_{\max} = 0.991$	$h = -9 \rightarrow 9$
20482 measured reflections	$k = -18 \rightarrow 18$
5443 independent reflections	$1 = -29 \rightarrow 29$

Refinement

Refinement on F^2	Calculated weights $w = 1/[\sigma^2(F_0^2) +$
	$(0.0792P)^2$] where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.069$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.159$	$\Delta ho_{ m max} = 0.53 \ m e \ \AA^{-1}$
S = 1.00	$\Delta ho_{ m min} = -0.21~{ m e~\AA^{-1}}$
5443 reflections	Extinction correction: none
344 parameters	Absolute structure: [10], 2336 Freidel pairs
H atoms constrained to parent site	Flack parameter: 0.56 (12)


3.0, which gives a visual presentation of the shape of the vibration modes [17]. Furthermore, the theoretical vibrational spectra of the title compound were interpreted using PEDs and the VEDA 4 program [18]. The improved performance of the density functional methods versus HF was quantitatively characterized using the PAVF 1.0 program [19, 20].

Results and Discussion

Description of Crystal Structure of C₁₄H₁₄ClN₃O

The title compound, $C_{14}H_{14}ClN_3O$, crystallizes with two independent molecules A and B in the asymmetric unit, in which the morpholine ring adopts a distorted chair conformation (Fig. 3). The bond lengths and bond angles of the title compound are given in Table 2.

The bond lengths and angles are in the normal range [21]. The C9–N3, O1–C12, and O1–C13 bond lengths were 1.384 (6), 1.432 (7), and 1.439 (6) Å, respectively. In addition,

Figure 3. Two molecules (A and B) of the title compound in the asymmetric unit with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Table 2. Selected bond lengths (Å) and angles (°) of the title compound

Bond lengths*	Molecule A	Molecule B	Bond lengths	Molecule A	Molecule B
C11–C8	1.753(5)	1.732(5)	N3-C14	1.447(7)	1.468(8)
C1-C2	1.398(8)	1.404(7)	N3-C9	1.384(6)	1.389(6)
O1-C13	1.439(6)	1.422(7)	N3-C11	1.468(6)	1.462(7)
O1-C12	1.432(7)	1.387(8)	C2-C3	1.382(7)	1.377(7)
C1-C7	1.465(7)	1.481(7)	C3-C4	1.447(9)	1.411(8)
C11-C12	1.476(7)	1.511(9)	C4-C5	1.358(10)	1.328(8)
N1-N2	1.275(7)	1.338(6)	C5-C6	1.402(9)	1.374(7)
N1-C8	1.378(7)	1.326(6)	C6-C1	1.366(8)	1.413(8)
N2-C9	1.342(6)	1.347(6)	C13-C14	1.483(7)	1.498(9)
Bond angles*			Bond angles		
C12-O1-C13	109.1(4)	107.2(4)	N2-C9-N3	115.5(4)	114.7(4)
N2-C9-C10	121.7(4)	121.6(4)	N3-C9-C10	122.8(4)	123.7(4)
N2-N1-C8	119.6(5)	119.7(4)	N3-C11-C12	110.2(4)	109.4(5)
N1-N2-C9	121.1(5)	119.5(4)	O1-C12-C11	113.4(4)	107.1(5)
C9-N3-C11	118.5(4)	121.8(4)	O1-C13-C14	111.9(5)	112.4(5)
C11-N3-C14	114.9(4)	112.6(5)	N3-C14-C13	110.5(4)	109.9(5)
C9-N3-C14	120.3(4)	119.6(4)	C1-C7-C8	125.6(4)	124.8(4)
N1-C8-C7	124.1(4)	124.8(5)	C3-C4-C5	119.8(5)	121.0(5)
C11-C8-N1	114.6(4)	113.8(4)	C2-C1-C6	118.2(4)	118.2(4)
C11-C8-C7	121.2(4)	121.4(4)	C7-C10-C9	119.9(5)	120.6(5)

^{*}See Fig. 3 for the corresponding atom names in molecule B.

C4-H4... O1ⁱ C26-H26B... O2ⁱⁱ

 $\text{C2-H2}\dots\text{Cg6}^{\text{iii}}$

C20-H20... Cg3^{iv}

Table 5. Hydr	ogen bond param	cicis (A,)	
D-H	H A	D A	D-H A
0.93	2.59	3.279 (7)	131

3.260 (7)

3.794 (6)

3.730 (7)

130

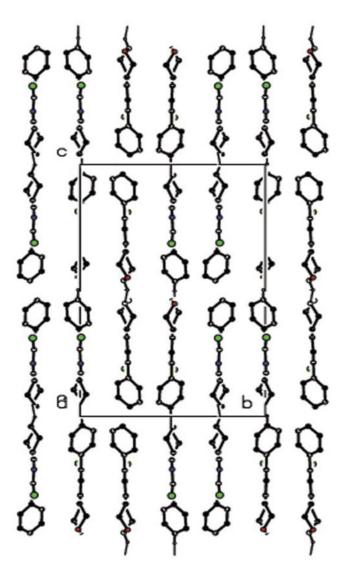
147

148

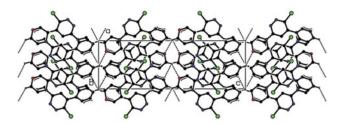
Table 3. Hydrogen bond parameters (Å, $^{\circ}$)

0.97

0.93


0.93

Symmetry codes: (i) 5/2-x, 1-y, -1/2+z; (ii) 1/2+x, 3/2-y, -z; (iii) 1-x, -1/2+y, 1/2-z; and (iv) 2-x, 1/2+y, 1/2-z. Cg3 and Cg6 are the centroids of the C1–C6 and C15–C20 rings, respectively.


2.55

2.98

2.91

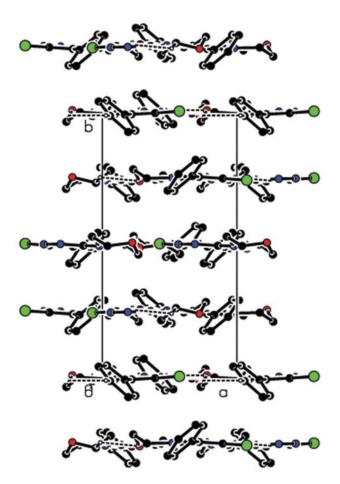

Figure 4. Packing and hydrogen bonding interactions of the title compound viewed down the *a*-axis. H atoms not participating in hydrogen bonding have been omitted for clarity.

Figure 5. Packing and hydrogen bonding interactions of the title compound viewed down the *b*-axis. H atoms not participating in hydrogen bonding have been omitted for clarity.

the C11-C8 bond length was 1.753 Å. These values were consistent with those reported previously: 1.388 (2), 1.424 (2) and 1.417 (2) Å [22], and 1.733 (2) Å [23].

In the crystal structure, molecules are linked by C-H... O interactions, in a parallel to (010). Furthermore, C-H... π interactions contribute to the stability of the structure. A

Figure 6. Packing and hydrogen bonding interactions of the title compound viewed down the c-axis. H atoms not participating in hydrogen bonding have been omitted for clarity.

weak $\pi - \pi$ interaction [centroid-centroid distance = 3.931(3) Å] is also observed between the 1,6-dihydropyridazine rings of molecules A and B in the asymmetric unit.

In molecules A and B of the title compound, the morpholine ring adopts a distorted chair conformation. The puckering parameters [24] are $Q_T = 0.528(6)$ Å, $\theta = 7.8(5)^\circ$, $\phi = 345(5)^\circ$ for (N3/O1/C11-C14) and $Q_T = 0.587(6)$ Å, $\theta = 167.1(6)^\circ$, $\phi = 216(3)^\circ$ for (N6/O2/C25-C28). In molecule A, the 1,6-dihydropyridazine ring (N1/N2/C7-C10) makes dihedral angles of 47.0(3)° with the phenyl ring (C1-C6), while in molecule B the corresponding angle is $-47.9(2)^\circ$.

The crystal structure is stabilized by C–H... O interactions and C–H... π interactions (Table 3). In addition, a weak π – π interaction [Cg2... Cg5(x, y, z) = 3.931(3) Å] exists between the Cg2 and Cg5 centroids of the (N1/N2/C7-C10) and (N4/N5/C21-C24) 1,6-dihydropyridazine rings of molecules A and B in the asymmetric unit. Figures 4–6 show the packing and hydrogen bonding of the title compound.

Theoretical Studies

Molecular Geometry

The optimized structure parameters of the title compound calculated using ab initio and DFT methods listed in Table 4 are in accordance with the atom numbering scheme given in Fig. 7. In addition, Table 4 compares the calculated geometric parameters with the experimental data. Based on this comparison, the bond lengths and angles calculated for the title compound are in good agreement with the experimental values. However, according to our calculations, the optimized bond lengths and bond angles obtained using the B3LYP method show the best agreement with the experimental values. The largest difference between experimental and calculated DFT/B3LYP-6-31G(d,p) bond lengths and bond angles were 0.071 Å and 2.01°, respectively.

Morpholine is a six-member heterocyclic aliphatic rings. The morpholine ring can exist in the chair and boat conformations. The chair conformation was found to be the most stable conformer [25]. We obtained the morpholine ring in a normal chair conformation, where the four carbon atoms C11, C12, C13, and C14 form a plane and the opposing nitrogen N3 and oxygen O1 atoms are located 46.66° above and 53.80° below the ring plane in our calculations. The C–C, C–O, and C–N bond lengths in the morpholine ring are found at approximately 1.52(1), 1.41(1), and 1.46(1) Å, respectively. The morpholine ring endohedral angles lie between 109.96° and 111.90°. These results are in agreement with single crystal X-ray diffraction results and literature values [25].

Vibrational Assignments

The title compound is a nonplanar molecule with C₁ point group symmetry. The molecule has 33 atoms and 93 normal modes of fundamental vibration [26]. All 93 vibrations are active in both IR and Raman. The FT-IR and RAMAN spectra of the title compound are given in Figs. 1 and 2. Table 5 lists the vibrational frequencies obtained using the B3LYP method with the standard 6-31G(d,p) basis set calculations together with the experimental frequencies and the approximate description of each normal modes. All other obtained data are given in the Supplemental Data, Table S1. The vibrational band assignments were made using both the animation option of the GaussView 3.0 graphical interface for Gaussian programs [17] and the VEDA 4 program [18]. Several calculated thermodynamic

Table 4. Optimized and experimental geometries of 3-chloro-4-phenyl-6-(morpholine-4-yl)-pyridazine in the ground state^a

-		pyridazine				
Bond lengths (Å)	Exp.b	B3LYP	BLYP	B3PW91	mPW1PW91	HF
C1-C2	1.398(8)	1.415	1.403	1.401	1.399	1.391
C1-C6	1.366(8)	1.415	1.403	1.401	1.399	1.389
C1-C7	1.465(7)	1.493	1.486	1.482	1.480	1.491
C2-C3	1.382(7)	1.403	1.393	1.391	1.389	1.383
C3-C4	1.447(9)	1.406	1.396	1.394	1.392	1.386
C4-C5	1.358(10)	1.405	1.395	1.393	1.391	1.384
C5-C6	1.402(9)	1.404	1.394	1.392	1.390	1.386
C7–C8	1.415(6)	1.427	1.417	1.414	1.412	1.418
C7-C10	1.380(7)	1.398	1.385	1.383	1.381	1.361
C8-N1	1.378(7)	1.331	1.318	1.317	1.314	1.286
C8-C11	1.753(5)	1.783	1.759	1.745	1.740	1.739
C9-C10	1.408(6)	1.424	1.415	1.412	1.410	1.414
C9-N2	1.342(6)	1.367	1.348	1.346	1.342	1.306
C9-N3	1.384(6)	1.392	1.382	1.376	1.374	1.388
C11-C12	1.476(7)	1.535	1.524	1.519	1.517	1.518
C11-N3	1.468(6)	1.484	1.470	1.462	1.460	1.460
C12-O1	1.432(7)	1.442	1.424	1.417	1.414	1.401
C13-C14	1.483(7)	1.543	1.530	1.526	1.523	1.520
C13-O1	1.439(6)	1.434	1.416	1.410	1.407	1.395
C14-N3	1.447(7)	1.474	1.462	1.454	1.452	1.460
N1-N2	1.275(7)	1.346	1.329	1.321	1.318	1.318
R	(.)	0.9522	0.9512	0.9512	0.9507	0.9338
Bond angles ($^{\circ}$)	Exp.	B3LYP	BLYP	B3PW91	mPW1PW91	HF
C2-C1-C6	118.20(4)	118.71	118.85	118.95	119.01	119.19
C2-C1-C7	120.60(5)	121.63	121.54	121.51	121.51	121.10
C6-C1-C7	121.00(5)	119.60	119.55	119.48	119.42	119.66
C1-C2-C3	121.30(5)	120.44	120.39	120.33	120.30	120.29
C2-C3-C4	118.60(5)	120.38	120.34	120.33	120.33	120.22
C3-C4-C5	119.80(5)	119.67	119.71	119.74	119.76	119.80
C4-C5-C6	119.00(6)	120.09	120.06	120.05	120.04	120.03
C1-C6-C5	122.70(5)	120.70	120.64	120.59	120.57	120.45
C1-C7-C8	125.60(4)	125.50	125.26	125.17	125.11	124.59
C1-C7-C10	120.80(4)	119.88	119.93	119.90	119.91	120.64
C8-C7-C10	113.60(4)	114.62	114.81	114.93	114.97	114.76
C7-C8-N1	124.10(4)	124.42	123.92	123.77	123.70	123.45
C7-C8-C11	121.20(4)	121.21	121.32	121.32	121.32	121.00
N1-C8-C11	114.60(4)	114.32	114.71	114.86	114.93	115.54
C10-C9-N2	121.70(4)	120.93	120.73	120.73	120.75	121.02
C10-C9-N3	122.80(4)	123.19	123.08	123.16	123.11	120.92
N2-C9-N3	115.50(4)	115.85	116.16	116.09	116.13	117.98
C7-C10-C9	119.90(5)	119.78	119.62	119.47	119.39	119.18
C12-C11-N3	110.20(4)	109.92	109.97	109.92	109.88	109.16
C11-C12-O1	113.40(4)	111.65	111.61	111.58	111.55	111.52
					(Continued on	next page)

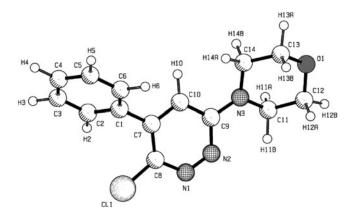

	J / 1 J		C	,	,	
Bond lengths (Å)	Exp. ^b	B3LYP	BLYP	B3PW91	mPW1PW91	HF
C14-C13-O1	111.90(5)	111.97	111.90	111.96	111.92	111.10
C13-C14-N3	110.50(4)	109.95	110.01	109.90	109.86	109.52
C8-N1-N2	119.50(4)	120.49	120.81	120.88	120.91	121.21
C9-N2-N1	121.10(5)	119.76	120.09	120.21	120.25	120.37
C9-N3-C11	118.50(4)	119.25	118.86	119.10	118.92	116.80
C9-N3-C14	120.30(4)	122.01	121.47	121.78	121.56	117.97
C11-N3-C14	114.90(4)	113.52	113.58	113.75	113.76	111.88
C12-O1-C13	109.10(4)	109.87	110.24	109.94	109.94	111.99
R	` ´	0.9756	0 9744	0.9729	0.9727	0.9410

Table 4. Optimized and experimental geometries of 3-chloro-4-phenyl-6-(morpholine-4-yl)-pyridazine in the ground state^a (*Continued*)

parameters are shown in Table 6. The total energies and the changes in the total entropy of the title compound at room temperature with different methods are also presented.

The characteristic ν_{CH} stretching vibrations of heteroaromatic structure are expected to appear in the 3000–3100 cm⁻¹ frequency range [27–29]. The ν_{CH} stretching vibrations of the title compound were assigned to four bands observed at 3107, 3096, 3066, and 3047 cm⁻¹ in the infrared spectrum. The B3LYP calculated wave numbers of these bands reproduced the experimental values well. The differences between experimental and calculated ν_{CH} values were approximately 3, 1, 5, and 17 cm⁻¹, respectively.

For the assignments of CH_2 group frequencies, six fundamentals can be associated with each CH_2 group: an asymmetric stretch, a symmetric stretch, and polarized scissoring and rocking modes. The wagging and twisting modes of the CH_2 group would be expected to be depolarized for out-of-plane bending vibrations. The CH_2 bending modes follow the following order scissoring > wagging > twisting > rocking [25].

Figure 7. Optimized molecular structure of 3-chloro-4-phenyl-6-(morpholine-4-yl)-pyridazine showing the atom numbering scheme.

^aAtom numbering scheme of the molecular structure is given in Fig. 7.

^bObtained from single crystal structure data of the title compound.

Table 5. Vibrational wave numbers for the title compound^a

No	Exp. IR	Exp. RAMAN	B3LYP	B3LYPxSF	B3LYPxSF	IR int.	RAMAN act.	Assignments, %PED, ^b
_	3107	l	3230	3105	3110	5.98	51.39	νC15-H16, 72
7	3096	I	3217	3093	3097	5.98	166.73	ν CH, sym, Ring 3, 83
3		3078	3208	3084	3088	22.63	179.78	ν CH, sym, Ring 3, 85
4		3075	3198	3075	3079	20.82	79.40	ν CH, asym, Ring 3, 83
2	3066	3062	3189	3066	3071	2.66	114.32	ν CH, asym, Ring 3, 81
9	3047	3054	3182	3059	3064	1.54	27.48	ν CH, asym, Ring 3, 80
7	3042	3046	3160	3038	3043	6.20	41.36	ν CH2, asym, Ring 1, 58
∞	2999	2993	3121	3000	3004	18.56	42.39	ν CH2, asym, Ring 1, 57
6	2993	2984	3113	2993	2997	39.94	193.06	ν CH2, asym, Ring 1, 64
10	2979	2979	3106	2986	2991	36.70	141.39	ν CH2, asym, Ring 1, 65
11	2899	2870	3005	2889	2893	95.52	44.88	ν CH2, asym, Ring 1, 73
12	2886	ı	2994	2878	2882	50.29	107.67	ν CH2, sym, Ring 1, 70
13	2864	2862	2992	2876	2880	27.93	141.17	ν CH2, sym, Ring 1, 69
14	2844	2843	2981	2866	2870	35.20	86.38	ν CH2, sym, Ring 1, 65
15	1601	1602	1660	1596	1598	0.07	189.66	ν CC, Ring 3, 33 + δ CH, Ring 3, 42
16	1584	1582	1636	1573	1575	33.50	20.42	ν CC, Ring 2,3, 25 + δ CH, Ring 2,3,
								36
17	1575	1574	1626	1563	1566	250.10	95.91	ν CC, Ring 2,3, 22 + δ CH, Ring 2,3, 34
18	1500	1497	1543	1483	1485	23.79	56.58	ν CC, Ring 2,3, 18 + δ CH, Ring 2,3, 34
19	1467	1465	1537	1478	1480	8.65	7.09	ν CC, Ring 2,3, 17 + δ CH, Ring 2,3, 21
20	1457	1459	1515	1457	1459	6.93	8.48	&CH2, Scis, Ring 1, 48 (Continued on next page)

Table 5. Vibrational wave numbers for the title compound^a (Continued)

Assignments, %PED, ^b	δCH2, Scis, Ring 1, 41	δCH2, Scis, Ring 1, 46	δCH2, Scis, Ring 1, 44	ν CC, Ring 3, 8 + δ CH, Ring 3, 20 +	δ CH2, Scis, Ring 1, 19 + ν CN, 7	ν CC, Ring 3, 9 + δ CH, Ring 3, 21 +	δ CH2, Scis, Ring 1, 16 + ν CN, 8	δCH2, wagg, Ring 1, 67	δ CH2 wagg, Ring 1, $60 + \nu$ CC, $8 + \nu$	$+ \nu CN, 5$	δCH2, wagg, Ring 1, 69	δCH2 wagg, Ring 1, 68	δCH2 wagg, Ring 1, 81	δCH, Ring 3, 61	δ CH2, twist, Ring 1, 48 + δ CC-H16,	$5 + \delta \text{CH Ring } 3, 10$	δCH2 twist, Ring 1, 67	ν CC, Ring 3, 18 + δ CH2, twist, Ring	1, $44 + \delta CC - H16$, 6	δCH2, twist, Ring 1, 64	ν CC, Ring 3, 7 + δ CH2, twist, Ring 1,	$43 + \delta CC - H16, 7$	δ CH2, twist, Ring 1, 68 + δ CC-H16, 4	δCH2, twist, Ring 1, 70	ν NN, 7 + ν CN, 14 + ν CC, 16 +	δCH2, twist, Ring 1, 28	δCH Ring 3, 58	$^{\nu}$ CN 10 + $^{\nu}$ CC, 27
RAMAN act.	9.55	6.52	22.37	27.72		19.33		7.21	22.33		13.60	12.46	7.84	2.39	9.36		18.46	0.63		32.45	105.53		10.11	17.07	21.25		4.61	3.74
IR int.	5.07	0.89	18.53	152.50		218.13		4.17	42.33		1.23	23.87	0.14	0.78	57.92		4.87	24.64		47.32	108.86		89.37	63.73	39.13		9.10	2.45
B3LYPxSF	1452	1443	1440	1431		1423		1383	1370		1356	1347	1319	1312	1300		1288	1276		1256	1228		1214	1194	1174		1166	1155
B3LYPxSF	1450	1441	1438	1429		1421		1381	1368		1354	1345	1317	1310	1298		1286	1274		1254	1226		1212	1193	1172		1165	1154
B3LYP	1508	1499	1495	1486		1478		1437	1423		1409	1399	1370	1363	1350		1338	1326		1304	1275		1261	1241	1219		1211	1200
Exp. RAMAN	1449	1445	1441	1436		1428		1394	1378		1360	1335	1322	1308	1306		1279	1274		1248	1236		1229	1186	1181		1160	1148
Exp. IR	1450	1446	1440	1437		1429		1392	1379		1360	1330	1323	1309	1302		1279	1273		1248	1236		1229	1189	1180		1158	1145
No	21	22	23	24		25		56	27		28	56	30	31	32		33	34		35	36		37	38	39		40	41

δ CH Ring 3, 67 + ν CC, 12	ν CO, 11 + ν CC, 10 + δ CCC 20	δ CC-H16, 6 + ν CC, 12 + δ CCH, 14	δCH2, rock, Ring 1, 80	δ CH, Ring 3, 41 + ν CC, ring 3, 17	δCH2, rock, Ring 1, 90	δCCH, 34 + Deformation, Ring 2, 10	δ CH, Ring 3, 21 + ν CC, Ring 3, 13 +	VCC, 11	δ CH2, rock, King 1, 41 +	Deformation, Ring 3, 11, $+ \nu$ CN, 5	δ CH2, rock, Ring 1, 54 + ν CC, 11 +	δCOC, 24	δ CCC, Ring 3, 32 + δ CH, Ring 3, 23	γ CH, Ring 3, 91	γ CH, Ring 3, 90	ν CN, 7 + ν CO, 5 + ν CC, 12 + γ CH,	Ring 3, 22	γ CH, Ring 3, 30 + δ CH, 11	γ CH, Ring 3, 74	γ CH16, 42	Deformation, Ring 1, 46	δCH2, rock, Ring 1, 80	γ CH, Ring 3, 89	ν CN, 6 + δ CH2, rock, Ring 1, 38	γ CH, Ring 3, 87	γ C-H16, Ring 3, 20 + γ C, Ring 3, 31	Continued on near page)
6.70	1.23	1.41	3.99	0.35	1.31	17.53	5.22	000	46.93		13.09		30.65	0.63	1.21	3.40		0.34	2.62	2.91	5.36	2.44	89.8	14.87	0.28	2.86	
0.01	64.24	85.65	9.87	2.28	2.96	5.94	0.48	0	4.28		5.76		2.22	0.15	0.54	77.98		5.23	0.63	11.05	21.33	1.00	1.32	30.21	18.34	2.72	
1145	1112	1104	1094	1070	1057	1033	1020	0	1000		266		826	965	941	936		206	903	856	852	832	829	802	752	725	
1144	11111	1103	1093	1068	1056	1031	1019	000	999		995		214	964	939	935		906	902	855	850	831	828	800	751	724	
1189	1155	1147	1137	11111	1098	1073	1060	0	1039		1035		1016	1002	716	973		942	938	688	885	864	861	833	781	753	
1139	1117	1114	1086	1078	1068	1047	1020	7	1001		686		982	626	950	948		931	925	877	998	851	819	815	9//	742	
1140	1117	1111	1081	1071	1063	1046	1019	0	1000		993		981	954	950	949		933	926	877	865	849	823	813	771	743	
42	43	44	45	46	47	48	49	Ç.	20		51		52	53	54	55		99	57	58	59	09	61	62	63	64	

Table 5. Vibrational wave numbers for the title compound^a (Continued)

							J.	
No	Exp. IR	Exp. RAMAN	B3LYP	B3LYPxSF	B3LYPxSF	IR int.	RAMAN act.	Assignments, %PED, ^b
65	712	713	724	969	<i>L</i> 69	6.52	14.11	δCCC Ring 3, 10 + δCH Ring 3, 7 + δCNN, 18 + νC-Cl, 23
99	704	902	714	989	289	25.05	1.95	γ CH, Ring 3, 86
29	672	674	685	629	099	33.82	11.35	γ C, 27 + δ CH2, rock, Ring 1, 31
89	648	648	959	630	631	8.74	1.47	γ CH, Ring 3, 21 + δ CH2, rock, Ring 1, 14
69	979	626	639	614	615	4.56	1.76	δCCC Ring 3, 16 + δCH Ring 3, 10 + δCCC Ring 3, 16
70	615	616	631	209	809	0.85	4.84	δ CCC Ring 3, 20 + δ CH Ring 3, 21
71	588	587	594	571	572	7.59	1.18	γ CH, Ring 3, 28 + δ CCC, 6 + δ CH2, rock. Ring 1.27
72	551	550	556	535	536	11.07	0.93	γ C, Ring 3, 26 + δ CH2, rock, Ring 1, 30
73		494	499	480	480	2.65	1.46	γ C, Ring 3, 31 + γ C, 20 + γ N, 29
74	l	464	484	465	466	0.27	1.67	δCH2, rock, Ring 1, 53
75		448	469	450	451	2.83	1.67	γ C, 24 + τ CC, 31
92		444	453	436	436	6.70	4.29	γ C, 24 + τ CC, 40
77		411	416	400	401	0.63	5.42	γ C Ring 3, 92
78			405	389	390	1.58	0.12	δCH2, rock, Ring 1, 76
79			389	374	374	5.69	0.40	γ C, 44 + γ N, 11
80		1	357	343	344	0.17	1.03	γ C, 48 + γ N, 28
81			298	286	287	12.81	5.67	τ CC, 30 + τ CN, 35 + τ CO, 9
82		1	278	267	267	7.42	1.23	τ CC, 46 + τ CN, 26
83		1	250	241	241	0.80	4.84	δCH2, rock, Ring 1, 66
84			244	234	234	3.81	2.69	δ CH2, rock, Ring 1, $58 + \tau$ CC, 20
85			221	212	213	3.32	2.70	δ CH2, rock, Ring 1, 42 + τ CC, 29
98		1	220	212	212	1.86	0.30	δCH2, rock, Ring 1, 72

ţ		,	,	-	0	1	7 F 15 00 100 00 00
		140	140	140	0.93	1.//	τ CC, 39 + τ CN, 20 (Skelatal vib.)
		109	104	105	0.25	1.39	τ CN, 39 + τ CC, 25 (Skelatal vib.)
		92	88	88	4.12	1.54	τ CN, 40 + τ CC, 36 (Skelatal vib.)
- 06		29	65	65	0.22	8.19	τ CC, 37 + τ CN, 32 (Skelatal vib.)
		53	51	51	0.24	9.34	τ CN, 35 + τ CC, 33 (Skelatal vib.)
92 —		37	36	36	0.18	2.33	τ CN, 56 + τ CN, 23 (Skelatal vib.)
93 —		25	24	24	90.0	0.31	τ CN, 55 (Skelatal vib.)
r —	I	0.9999	0.9999	0.9999			
Mean absolute		3.3496	0.9217	0.8859	I		
percentage error							
Mean absolute er	ror	51.8607	9.3826	9.2831			
RMS_{ov}		54.6629	9.856	9.6505			
$ m RMS_{mol}$		63.3443	11.4213	11.1831			
Scaling factor, SF	Œ	1.0000	0.9614	0.9628	1		

^aHarmonic frequencies (in cm⁻¹), IR intensities (km/mol), Raman activity (Å/amu).
^bν, stretching; δ, in-plane bending; γ, out-of-plane bending; τ, torsion; sym, symmetric; asym, asymmetric; Ring1: C1-C2-C3-C4-C5-C6; Ring2: C7-C8-N1-N2-C9-C10; and Ring3: N3-C11-C12-O1-C13-C14. PED less than 10% are not shown.

Table 6. Theoretically computed energies, zero-point vibrational energies, entropies, and dipole moment for the title compound

Thermodynamic parameters (298 K)	B3LYP	BLYP	B3PW91 1	mPW1PW91	HF
SCF energy (a.u.)	-1241.565 -	1241.240 —	1241.218 -	-1241.395 -	1235.966
Total energy (Thermal) E_{total} (kcal/mol)	174.690	169.525	175.174	176.328	186.309
Heat capacity at const. volume, C_v (cal/mol.K)	61.224	63.590	61.097	60.616	56.175
Entropy, S (cal/mol.K)	130.502	132.719	130.486	129.925	125.368
Vibrational energy, E_{vib} (kcal/mol)	172.913	167.747	173.397	174.551	184.532
Zero-point vibrational energy, E_o (kcal/mol)	164.79027	159.29618	165.2811	2 166.50446	177.13704
Rotational constant (GHz)					
A	0.62604	0.61379	0.6306	5 0.63380	0.64040
В	0.17997	0.17726	0.1809	0.18153	0.18102
C	0.14534	0.14303	0.1463	4 0.14684	0.14829
Dipole moment (Debye)					
μx	-0.2551	0.0368	-0.2373	-0.3062	-1.2444
μ y	-4.9311	-4.8960	-4.9470	-4.9450	-5.0728
μz	0.5424	0.4843	0.5181	0.5384	0.7452
μ Total	4.9674	4.9200	4.9797	4.9836	5.2761

The C—H stretching vibration of the methylene group is at lower frequencies than those of the aromatic C-H ring stretching. The asymmetric CH₂ stretching vibration generally observed in the 3000–2900 cm⁻¹ region while the CH₂ symmetric stretch appears between 2900 cm⁻¹ and 2800 cm⁻¹ [30, 31]. The bands at 3037 (3047), 2999 (2993), 2993 (2984), 2979 (2979), and 2899 (2870) cm⁻¹ in FT-IR (FT-Raman) are assigned to CH₂ asymmetric stretching vibrations. The computed anharmonic frequencies using the B3LYP method for CH₂ asymmetric and symmetric stretching vibrations show good correlation with recorded spectral data and are in close agreement with the literature values [30,31].

The bond angle bending (HCH) vibrational modes (scissoring, wagging, twisting, and rocking) are well defined in all the calculations. As seen in Table 5, the bands observed at 1457 (1459), 1450 (1449), 1446 (1445), and 1440 (1441) cm⁻¹ in the FT-IR (FT-Raman) spectrum correspond to scissoring deformation of -CH₂- groups in the title compound [32,33]. The theoretically computed values for the scissoring deformation vibration modes show good agreement with the experimental values. The wagging, twisting, and rocking vibrational modes are distributed over a wide range [32–35]. Twisting and wagging vibrational modes for the –CH₂- groups were assigned in the 1392–1180 cm⁻¹ range. The above result is in close agreement with the literature values [36]. These vibrational modes are described in the tables by mean of the general symbol δ_{CH2} . The rocking –CH₂- is assigned in the of 1081–813 cm⁻¹ range [33, 34]. These bands are assigned using calculated PED.

The bands due to the δ_{CH} in-plane ring bending vibration interacting with the ν_{CC} stretching vibration are observed in the region 1601–1019 cm⁻¹. γ_{CH} Out-of-plane bending vibrations are strongly coupled vibrations that occur in the region 954–648 cm⁻¹ region

Table 7. Mullikan atomic charges calculated using B3LYP/6-31G(d,p)

			Charge		
Atom	B3LYP	BLYP	B3PW91	mPW1PW91	HF
C1	0.038447	0.060431	0.014059	0.006285	-0.032104
C2	-0.085915	-0.070693	-0.108420	-0.110197	-0.115811
H2	0.106766	0.078946	0.142526	0.148556	0.172431
C3	-0.092183	-0.064878	-0.130160	-0.136178	-0.151562
H3	0.095145	0.067656	0.130902	0.136905	0.159613
C4	-0.077713	-0.050605	-0.112538	-0.118245	-0.141941
H4	0.092538	0.064826	0.128253	0.134321	0.157746
C5	-0.090473	-0.063272	-0.128162	-0.134198	-0.149392
H5	0.092491	0.064779	0.128426	0.134486	0.157501
C6	-0.104228	-0.086860	-0.129099	-0.131347	-0.136865
H6	0.091394	0.062689	0.128213	0.134411	0.160433
C7	0.075410	0.096086	0.056200	0.049635	-0.000283
C8	0.054229	0.052294	0.035212	0.034295	0.080985
C9	0.537061	0.501141	0.554982	0.563843	0.615264
C10	-0.113178	-0.098196	-0.136747	-0.138312	-0.140821
H10	0.104408	0.073884	0.139759	0.146643	0.188726
C11	-0.044944	-0.032640	-0.100268	-0.102861	-0.012572
H11A	0.157337	0.141011	0.188122	0.191440	0.160330
H11B	0.109054	0.095898	0.137470	0.140796	0.128571
C12	0.042606	0.050514	-0.011831	-0.014444	0.096870
H12A	0.111794	0.095832	0.141275	0.144974	0.133273
H12B	0.095016	0.082384	0.121257	0.124677	0.106745
C13	0.056315	0.063479	0.001943	-0.000582	0.111830
H13A	0.093484	0.080299	0.119543	0.123171	0.107063
H13B	0.108729	0.092746	0.138224	0.141955	0.130057
C14	-0.049486	-0.036719	-0.101009	-0.104399	-0.038038
H14A	0.112357	0.099129	0.140413	0.143707	0.127663
H14B	0.111663	0.099266	0.139361	0.142696	0.119798
N1	-0.252648	-0.249057	-0.251061	-0.251274	-0.249090
N2	-0.375084	-0.356096	-0.382214	-0.386528	-0.418784
N3	-0.528716	-0.466142	-0.551682	-0.568497	-0.732696
O1	-0.479554	-0.440895	-0.476351	-0.484467	-0.633747
Cl1	0.007879	-0.007239	0.033403	0.038733	0.038806

[37, 38]. The δ_{CH} and γ_{CH} bending vibrations of the CH group have also been identified for the title compound and are presented in Table 5.

Silverstein et al. [33] assigned C-N stretching absorption in the 1382–1266 cm $^{-1}$ region for aromatic amines. The identification of $\nu_{\text{C-N}}$ vibrations is difficult because of possible overlap in this region. However, with the help of theoretical calculations (VEDA 4) the $\nu_{\text{C-N}}$ vibrations were identified and assigned. The infrared (Raman) bands appearing at 1437 (1436), 1429 (1428), and 1379 (1378) cm $^{-1}$ were designated as $\nu_{\text{C-N}}$ stretching

vibrations. The slight shift in wave number results from the increase in force constants of the C-N bond due to resonance.

C—Cl stretching vibrations generally give strong bands in the 710–500 cm⁻¹ region. For simple organic chlorine compounds, C—Cl absorptions lie in the 750–700 cm⁻¹ region. Thus, the band observed (calculated) at 712 (697) cm⁻¹ in the FT-IR spectrum was assigned to a C-Cl stretching vibration in the present investigation. The above result is in close agreement with the literature values [39–41].

The most characteristic vibration of cyclic ethers is in the 1150–1085 cm⁻¹ region and corresponds to C—O—C asymmetric stretching [42, 43]. The computed C—O—C asymmetric stretching vibrations at 1112 cm⁻¹ are found to be in perfect agreement with the experimental FT-IR value of 1117 cm⁻¹ and FT-Raman value of 1117 cm⁻¹. The modes observed at 993 cm⁻¹ in the infrared and at 989 cm⁻¹ in the Raman spectrum are assigned to the C—O—C in-plane bending mode of the title compound. The Raman frequencies observed at 712 cm⁻¹ in IR and 713 cm⁻¹ are assigned to the in-plane bending of C—N—N.

To investigate the performance and vibrational frequencies for the title compound, the mean deviation, mean absolute deviation, average absolute error, root mean square (RMS) value, and correlation coefficient between the calculated harmonic and observed fundamental vibrational frequencies for each method were calculated and are given in Table 5. The RMS values were obtained in this study using the following equation [44]:

$$RMS = \sqrt{\frac{1}{n-1} \sum_{i}^{n} \left(\nu_i^{\text{calc}} - \nu_i^{\text{exp}} \right)^2}$$
 (1)

These results indicate that the B3LYP calculations approximate the observed fundamental frequencies much better than other methods. A small observed difference between experimental and calculated vibrational modes can be attributed to hydrogen bond vibrations present in the crystal that lead to strong perturbation of the infrared frequencies (and intensities) of many other modes. We state that the experimental results are solid-phase and theoretical calculations are in the gaseous phase.

Atomic charges for the title compound calculated using the B3LYP/6-31G(d,p) method are given in Table 7. The morpholine nitrogen (N3) possesses more negative charge than the other nitrogen atoms due the lone pair electron delocalization. This also contributes to a positive charge on the carbon atom (C9) of the pyridazine ring.

Conclusions

In this study, we have determined the crystal structure of 3-chloro-4-phenyl-6-(morpholine-4-yl)-pyridazine using single crystal X-ray diffraction analysis. We calculated the geometric parameters and vibrational frequencies of the title compound using HF, BLYP, B3LYP, B3PW91, and mPW1PW91 methods with the standard 6-31G(d,p) basis set. The optimized geometric parameters (bond lengths and bond angles) agree with the experimental values for 3-chloro-4-phenyl-6-(morpholine-4-yl)-pyridazine. Comparison of the observed fundamental vibrational frequencies of the title compound and the calculated results from the density functional (BLYP, B3LYP, B3PW91, and mPW1PW91) and HF methods indicate that B3LYP is superior to the scaled HF, BLYP, B3PW91, and mPW1PW91 approach for molecular vibrational problems.

Acknowledgments

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayis University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary Information

Crystallographic data for the structural analysis of 3-chloro-4-phenyl-6-(morpholine-4-yl)-pyridazine have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 924535. Copies of the data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223–336–033; or e-mail: deposit@ccdc.cam.ac.uk.

References

- [1] Sukuroglu, M., Kupeli, E., Banoglu, E., Unlu, S., Yesilada, E., & Sahin, M. F. (2006). Arzneimittel-Forsch., 44, 337.
- [2] Brogden, R. N. (1986). Drugs, 32, 60.
- [3] Pieretti, S., Dal Piaz, V., Matucci, R., Giovannoni, M. P., & Galli, A. (1999). Life Sci., 65, 1381.
- [4] Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie: Darm-stadt, Germany.
- [5] Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G., & Spagna, R. (1999). J. Appl. Crystallogr., 32, 115.
- [6] Sheldrick, G. M. (2008). Acta Crystallogr., A64, 112.
- [7] Farrugia, L. J. (1997). J. Appl. Cryst., 30, 565.
- [8] Farrugia, L. J. (1999). J. Appl. Cryst., 32, 837.
- [9] Spek, A. L. (2009). Acta Cryst., D65, 148.
- [10] Flack, H. D. (1983). Acta Crystallogr., A39, 876.
- [11] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A., Stratmann, R. E., Jr, Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Salvador, P., Dannenberg, J. J., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., & Pople, J. A. (2003). Gaussian 03 Revision C.02 Gaussian Inc.: Pittsburgh, PA.
- [12] Foresman, B., & Frisch, E. (1993). Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian, Gaussian, Inc.: Pittsburgh, PA.
- [13] Scott, A. P., & Radom, L. (1996). J. Phys. Chem. Us., 100, 16502.
- [14] Arslan, H., Algul, O., & Onkol, T. (2008). Spectrochim. Acta A, 70, 606.
- [15] Arslan, H., & Demircan, A. (2007). Acta Phys-Chim. Sin., 23, 1683.
- [16] Arslan, H., Algul, O., & Dundar, Y. (2007). Vib. Spectrosc., 44, 248.
- [17] Gaussview, Version 3.07, Dennington, R., Keith, T., Millam, J., Eppinnett, K., Hovell, W. L., & Gilliland, R. (2003). Semichem. Inc., Shawnee Mission, KS.
- [18] Jamróz, M. H. (2004). Vibrational Energy Distribution Analysis Veda 4, Warsaw.
- [19] Arslan, H. (2007). Performance Analysis of Vibrational Frequencies Pavf 1.0. Mersin Turkey.
- [20] Arslan, H., & Demircan, A. (2007). Int. J. Mol. Sci., 8, 1064.

- [21] Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., & Taylor, R. (1987).
 J. Chem. Soc. Perk., T 2, S1–S19.
- [22] Aydin, A., Sukuroglu, M., Akkurt, M., & Buyukgungor, O. (2011). Acta Crystallogr., E67, o666.
- [23] Aydin, A., Akkurt, M., Uzun, L., Yildirim, L., & Onkol, T. (2010). J. Chem. Crystallogr., 40, 816.
- [24] Cremer, D., & Pople, J. A. (1975). J. Am. Chem. Soc., 97, 1354.
- [25] Balachandran, V., Mahalakshmi, G., Lakshmi, A., & Janaki, A. (2012). Spectrochim. Acta A, 97, 1101.
- [26] Bellamy, L. J. (1959). The Infrared Spectra of Complex Molecules, John Wiley: New York.
- [27] Arjunan, V., Rani, T., Mythili, C. V., & Mohan, S. (2011). Eur. J. Chem., 1(1), 70.
- [28] Anbarasan, P. M., Kumar, P. S., Vasudevan, K., Govindan, R., Prakasam, A., & Geetha, M. (2011). Eur. J. Chem., 2(2), 206.
- [29] Arslan, H., & Algul, O. (2007). Int. J. Mol. Sci., 8, 760.
- [30] Sajan, D., Binoy, J., Pradeep, B., Krishna, K. V., Kartha, V. B., Joe, I. H., & Jayakumar, V. S. (2004). Spectrochim. Acta A, 60, 173.
- [31] Furic, K., Mohacek, V., Bonifacic, M., & Stefanic, I. (1992). J. Mol. Struct., 267, 39.
- [32] Bayari, S., Saglam, S., & Ustundag, H. F. (2005). J. Mol. Struc. Theochem., 726, 225.
- [33] Silverstein, M., Clayton Basseler, G., & Morill, C. (1981). Spectrometric Identification of Organic Compounds, Wiley: New York.
- [34] Kimmelma, R., & Hotokka, M. (1997). Theochem. J. Mol. Struc., 418, 189.
- [35] Sundaraganesan, N., Meganathan, C., Anand, B., & Lapouge, C. (2007). Spectrochim. Acta A, 66, 773.
- [36] Cabral, O. V., Tellez, C. A., Giannerini, T., & Felcman, J. (2005). Spectrochim. Acta A, 61, 337.
- [37] Panicker, C. Y., Varghese, H. T., Ambujakshan, K. R., Mathew, S., Ganguli, S., Nanda, A. K., Alsenoy, C. V., & Yohannan, S. M. (2010). Eur. J. Chem., 1(1), 37.
- [38] Arslan, H., & Algul, O. (2008). Spectrochim. Acta, A70, 109.
- [39] Jensen, J. O., & Jensen, J. L. (2003). Vib. Spectrosc., 33, 3.
- [40] Arslan, H., Kulcu, N., & Florke, U. (2006). Spectrochim. Acta A, 64, 1065.
- [41] Arslan, H., & Ozpozan, T. (2006). Asian J. Chem., 18, 1815.
- [42] Sundaraganesan, N., Saleem, H., Mohan, S., Ramalingam, A., & Sethuraman, V. (2005). Spectrochim. Acta A, 62, 740.
- [43] Bellamy, L. J. (1959). The Infrared Spectra of Complex Molecules, John Wiley: New York.
- [44] Krishnakumar, V., Dheivamalar, S., Xavier, R. J., & Balachandran, V. (2006). Spectrochim. Acta A, 65, 147.